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Abstract. Particle coagulation is mathematically described by an infinite set of coupled
nonlinear differential equations. A solution to these equations is derived for the case in which
all particle clusters possess the same reactivity (i.e. a constant kernel) and where the initial
conditions are bimodal, consisting of monomers and any sizedJ -mers. Properties of the solution
are explored and it is shown that the scaling theory developed by Swift and Friedlander (1964J.
Colloid. Sci. 19 621) and extended by van Dongen and Ernst (1984Phys. Rev. Lett.54 1396)
applies to all cluster sizes only in the limitt →∞, as reported previously by Kreer and Penrose
(1994 J. Stat. Phys.75 389). At finite times we find distinctly different scaling properties for
the small and large ends of the size spectrum. Furthermore, at all times the shape of the small
end of the size spectrum retains a memory of the initial conditions. These results may apply to
other modes of coagulation so long as interactions between small clusters, and between small
and large clusters, are as weak as the constant kernel employed here.

1. Introduction

The kinetic equation describing the time evolution of small particles undergoing irreversible
coagulation in a homogeneous medium was formulated by von Smoluchowski (1917) at the
beginning of this century:

dnj (t)

dt
=

j−1∑
i=1

Ki,j−ininj−i − 2
∞∑
i=1

Ki,jninj . (1)

Herenj is the number concentration of clusters containingj primary particles (or ‘j -mers’),
andKi,j is a rate constant that describes coagulation between ani-mer and aj -mer. The
r.h.s. of this equation models the rate at whichj -mers are formed by the binary clustering of
i-mers and(j−i)-mers (first term), and the rate at whichj -mers are lost to coagulation with
all other cluster sizes (second term). Application of (1) to the study of particle coagulation is
complicated by the mathematical difficulties associated with solving the governing equation
(Hidy 1965, Hidy and Lilly 1965, Kobraei and Duncan 1986, Erasmuset al 1994, Eyre 1995)
and our limited understanding of the physical and surface-chemical processes that govern
the mathematical form of the rate matrix or ‘kernel’,Ki,j . To date, familiar solutions to
(1) have been found only for a few algebraically simple forms of the kernel, including the
constant kernel(Ki,j = K1,1), the sum kernel(Ki,j = K1,1(i + j)/2), the product kernel
(Ki,j = K1,1ij) and linear combinations of these (von Smoluchowski 1917, Melzak 1953,
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McLeod 1962, Spouge 1983, Bak and Lu 1987, Binglin 1987, Gabellini and Meunier 1992,
Treat 1992).

It has been postulated that the cluster-size distributions predicted by (1) are self-similar,
in that they collapse onto a single curve when properly scaled. This self-similar feature of
the cluster-size distribution implies that it can be written in the following factored form as
t →∞ with j/s(t) fixed:

nj (t) ∼ s(t)−2ψ(j/s(t)). (2)

The functions(t) is some measure of the average cluster size andψ(η) represents the shape
of the cluster-size distribution (Friedlander and Wang 1966, van Dongen and Ernst 1984,
Gabellini and Meunier 1992). In this analysis, it is assumed thatψ(η) is ‘universal’, whereby
we mean that it does not depend on the initial conditions. As proposed by van Dongen and
Ernst (1984), hereafter referred to as VDE, the nature of the functionss(t) andψ(η) depends
on two mathematical features of the kernel: the homogeneity,λ, of Ki,j with respect to
its argumentsi and j , and the exponentµ that governs the smalli/j limit of Ki,j . The
magnitude and sign ofλ determines whether the reactivity between clusters of the same size
grows(λ > 0) or decreases(λ < 0) with cluster size, whileµ determines whether clustering
occurs preferentially between clusters of the same size(µ > 0) or between clusters of vastly
different size(µ < 0). The predicted relationships between the mathematical features of
the kernel (i.e.µ andλ) and the resultant cluster-size distribution (i.e.s(t) andψ(η)) are
presented elsewhere (van Dongen and Ernst 1984, Broide and Cohen 1992, Gabellini and
Meunier 1992).

Validation of the above similarity theory has come from experimental investigations
(Swift and Friedlander 1964, Friedlander and Wang 1966, Weitzet al 1984, Bolleet al 1987,
Matsoukas and Friedlander 1991, Broide and Cohen 1992, Olivieret al 1992, Ferńandez-
Barberoet al 1996, Mishraet al 1998), computer simulations of the clustering process
(Jullien et al 1984, Vicsek and Family 1984, Meakinet al 1985, Meakin 1987), and
detailed analyses of the solutions to (1) (Mulhollandet al 1977, Jullien 1990, Gabellini
and Meunier 1992, Kreer and Penrose 1994). Of the solutions, the constant kernel solution
has received considerable attention because it closely approximates the physical system
where coagulation is rate-limited by how fast clusters can diffuse into contact (Broide
and Cohen 1992, Fernández-Barberoet al 1996): so-called diffusion-limited cluster–cluster
aggregation (DLA). Provided that there are no clusters initially present, von Smoluchowski
(1917) showed that the solution to (1) for the choice of a constant kernel is given as follows:

nj (t) = N∞(0) (t/tc)
j−1

(1+ t/tc)j+1
(3)

whereN∞(0) is the zeroth moment of the size distribution att = 0. The parameter
tc = 1/(K1,1N∞(0)) represents the characteristic timescale for the formation of dimers
by coagulation of single particles. Relative to the VDE similarity predictions presented
earlier, it is easy to show that in the limit of long-time,nj develops the self-similar form
predicted by (2) withψ(η) = e−η ands(t) ∼ t (Swift and Friedlander 1964). Experimental
measurements of particle-size distributions undergoing DLA reveal that the average cluster-
size s(t) increases linearly with time as predicted, but that the cluster-size distribution
ψ(η) does not decline monotonically withη. The latter disagreement between theory and
experiment has been attributed to the fact that the constant kernel fails to account for the
preferential scavenging of small clusters by large clusters characteristic of DLA (Broide and
Cohen 1992, Ferńandez-Barberoet al 1996).

Von Smoluchowski’s solution to (1) for the constant kernel is valid for monodisperse
initial conditions. However, there are many examples of physical systems where the particles
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are initially distributed between two or more cluster sizes (i.e. polydisperse). Mulholland
et al (1977) investigated the influence of broad and narrow initial size distributions on the
scaling properties of the large end of the size spectrum. These researchers found that the
self-similar nature of the large end of the size spectrum was not independent of the initial
conditions, or universal, when the initial size distribution was broad. The focus of this study
is to investigate to what extent the memory of initial conditions is preserved in the small
end of the size spectrum. We accomplish this by solving (1) with a constant kernel and a
bimodal initial distribution consisting of monomers and any sizeJ -mers.

The paper is organized as follows. We derive this new solution in section 2 and present
illustrative examples of the predicted cluster-size distribution in section 3. In section 4, we
investigate limitations of the scaling form given by (2) and present a new scaling relationship
for the small end of the size spectrum.

2. Derivation of solution

We begin by recasting (1) into a non-dimensional form:

dn̄j (τ )

dτ
=

j−1∑
i=1

n̄i n̄j−i − 2n̄j
∞∑
i=1

n̄i (4)

wheren̄j = nj/N∞(0) is the reduced form of the fluid concentration ofj -mers,τ = t/tc is
reduced time, andN∞(0) is the total number concentration of clusters atτ = 0. Equation (4)
may be further simplified by recalling the definition of the zeroth moment,N̄∞ =

∑∞
j=1 n̄j

and definingn̄0(τ ) ≡ −N̄∞(τ ):
dn̄j (τ )

dτ
=

j∑
i=0

n̄i n̄j−i . (5)

We introduce a generating function

g(x, τ ) ≡
∞∑
j=0

n̄j (τ )x
j (6)

for which a partial differential equation is developed by differentiating with respect toτ ,
and substituting (5):

∂τg(x, τ ) = g(x, τ )2. (7)

This is a Bernoulli differential equation for which a solution may be found by changing the
dependent variable tog(x, τ )−1:

g(x, τ ) = 1/[−τ + 1/g(x, 0)]. (8)

Here g(x, 0) is the generating function that describes the initial condition, and thus the
cluster-size distribution, atτ = 0.

We wish to solve (1) subject to the following initial conditions:

n̄1(0) = α (9a)

n̄J (0) = β (9b)

n̄j (0) = 0 j 6= 1, J (9c)

whereα, β > 0 andα+β = 1. This represents a bimodal distribution where the fraction of
the total particle concentration initially distributed between monomers andJ -mers is given
by α andβ, respectively.
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Given these initial conditions for̄nj (0), g(x,0) has the form

g(x, 0) = −1+ αx + βxJ (10)

and (8) becomes

g(x, τ ) = −1+ αx + βxJ
(1+ τ)− τ(αx + βxJ ) . (11)

In order to develop an expression forn̄j (τ ), the generating function is expressed in increasing
powers ofx. The final result is

n̄j (τ ) = 1

(1+ τ)2
j

J−1∑
l=0

(
j − l(J − 1)

l

)
αj−lJ βl

(
τ

1+ τ
)j−1−l(J−1)

(12)

where (
a

b

)
= a!

(a − b)!b!
.

The algebraic manipulations involved in the last step are presented in the appendix. A
recurrence relation is also available for solutions to (4), wherej > J :

(1+ 1/τ)n̄j+1(τ ) = αn̄j (τ )+ βn̄j+1−J (τ ). (13)

Equation (13) is a direct consequence of the expression for the generating function given
in (11).

3. Illustrative examples of predicted cluster-size distribution

In this section we examine the influence of the parametersα, β and J on the cluster-
size distribution predicted by our solution. In figure 1, the cluster-size distribution,n̄j ,
is plotted againstj for the case where equal number concentrations of monomers and
4-mers are allowed to coagulate for a total of 10 coagulation timescales (i.e.α = β = 0.5,
J = 4 andτ = 10). The pattern observed here is typical for all cluster-size distributions
with J > 1: the distribution is oscillatory for smallj and decays exponentially as
nj ∼ exp(−jN∞(τ )/N1) for largej .

For the constant kernel used in our study,λ = µ = 0 and, therefore, the reactivity
between any two clusters is the same regardless of cluster size. The only factors affecting the
rate at which clusters appear and disappear from the system are the number concentrations
of clusters involved in the reactions. For this reason, we find peaks and holes in the
cluster-size distribution resulting from any initially bimodal distribution. For the cluster
distribution illustrated in figure 1, clustering between monomers and 4-mers generates peaks
at j = 1, 4, 9, 13, . . . and holes atj = 3, 7, 11, 16, . . . . The influence of time on the size
distribution is illustrated in figure 2 forJ = 4, α = β = 0.5, and three different choices
of τ . Oscillatory behaviour can be observed at the small end of the size spectrum even
for τ = 100. Hence, the small end of the size spectrum retains a memory of the initial
condition even after the system has been coagulating for a very long time.

In figure 3, the cluster-size distributions are shown for several choices ofα and β.
All distributions correspond toJ = 4 and τ = 10. As the initial condition becomes
dominated by monomers(α → 1), the peaks found at the small end of the size spectrum
are increasingly less pronounced, and the cluster-size distribution approaches the exponential
curve (full curve) characteristic of monodisperse initial conditions. This is a result of the
ease with which all clusters are created when there is an abundance of monomers. Asα
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Figure 1. The typical shape of a cluster-size distribution resulting from a bimodal initial
condition. Here the reduced cluster concentration,n̄j , is plotted for each cluster size,j . This
particular cluster-size distribution is for initial conditions specified byJ = 4 andα = β = 0.5
at τ = 10. A log–linear version of the same graph appears in the upper right-hand corner.

Figure 2. The time evolution of the cluster-size distribution resulting from initial conditions
specified byJ = 4 andα = β = 0.5.

becomes smaller, the oscillatory behaviour of the small end of the spectrum becomes more
pronounced and the oscillations extend farther intoj -space.

The magnitude ofJ affects the shape of the cluster-size distribution by altering the
distribution of particles between peaks and holes, and shifting the position of peaks and
holes in j -space. Figure 4 shows the cluster-size distribution forJ = 1, 2 and 4 when
τ = 10 andα = β = 0.5. WhenJ = 2, the distribution approaches the one that evolves
from only monomers (full curve) because it is relatively easy to create allj -mers from
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Figure 3. The effect of changing the initial distribution of particles between monomers(α) and
J -mers(β) on the cluster-size distribution. Sinceβ = 1− α, the distributions are labelled by
their α-values only. All cluster-size distributions are forτ = 10 and result from coagulation
between a monomer and a 4-mer (i.e.J = 4).

monomers and dimers. WhenJ becomes larger, peaks and holes extend farther into the
size spectrum and the magnitude of the peaks and holes is more pronounced.

The transition from the oscillatory region to the exponentially decaying region, and
the locations of the peaks and holes in the cluster-size distributions, can be rationalized as
follows. We can express̄nj (τ ) as a sum of oscillatory terms:

n̄j (τ ) = 1

τ 2

∑
rτ

1

g′(rτ )
1

r
j+1
τ

(14)

where the sum is over the rootsz = rτ of g(z) = g(z, 0) = 1/τ , (written here as if they
were simple roots). This representation follows directly from the Cauchy residue formula
and the complex integral:

n̄j (τ ) = 1

2π i

∮
|z|=ε>0

g(z, τ )
dz

zj+1
= 1

2π i

∮
|z|=ε>0

g(z)

1− τg(z)
dz

zj+1
. (15)

For reasonably largeτ , the rootsrτ of g(z) = 1/τ will be close to the roots ofg(z) = 0.
In the example above whereJ = 4 andα = β = 0.05 we have

g(z) = 1
2z

4+ 1
2z− 1. (16)

The four complex roots of (16) arer1 = 1, r2 = −1.3532,w = 0.1766+ 1.2028i, and
w̄ = 0.1766−1.2028i. These roots will in general lie outside the unit circle and the modulus
of the root|rτ | > 1 nearest to 1 will dominate the sum in (14) and govern the exponential
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Figure 4. The effect of the cluster size,J , initially present with the monomer, on the cluster-size
distribution. The distributions forτ = 10, α = β = 0.5 andJ = 1, 2 and 4 are shown.

decay of n̄j (τ ) as j increases. The closer the other roots,rτ , are to the unit circle, the
longer the oscillatory region will endure. In our example, the roots closest to the unit circle
arew and w̄ with |w| = |w̄| = 1.2157; if we desire the leading term in (14) to dominate
to N orders of magnitude then we want

∣∣ 1
wj+1

∣∣ ∼ 10−N or j + 1 ∼ ln(10)N
ln |w| . If N = 2, then

j ∼= 22.5. This explains the transition from the oscillatory region to the exponential decay
region at approximatelyj = 23 in figure 1.

The locations of the peaks and holes in the cluster-size distributions may be explained
using (14) as well. The peaks occur when the oscillatory terms1

g′(rτ )
1
r
j+1
τ

are in near
conjunction with the positive real axis and the holes occur when these terms conjoin near
the negative real axis. In the same example used above whereJ = 4 andα = β = 0.5, for
j = 7, the argument of the complex number1

g′(w)
1

wj+1 is about 174◦ so this gives a hole.

For j = 9, the argument of 1
g′(w)

1
wj+1 is about 11◦ and this gives a peak.

Finally, (14) can be used to investigate if the oscillatory behaviour of the small end
of the size spectrum is unique to a bimodal initial distribution, or if it occurs for other
polydisperse initial distributions as well. Figure 5 illustrates the location of the roots,rτ ,
and the predicted cluster-size distributions resulting from the coagulation of a trimodal
distribution (consisting of equal number concentrations of monomers, 4-mers and 8-mers)
and a tetramodal distribution (consisting of equal number concentrations of monomers,
4-mers, 8-mers and 12-mers) atτ = 100. As with the bimodal distributions described
above, the two distributions illustrated in figure 5 exhibit oscillatory behaviour for smallj ,
even after the systems have been coagulating for a long period of time.
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Figure 5. The roots,rτ , of g(z) = 1
100 for (a) a trimodal initial condition with equal number

concentrations of monomers, 4-mers and 8-mers, and (b) tetramodal initial condition with equal
number concentrations of monomers, 4-mers, 8-mers and 12-mers, respectively, plotted in the
complex plane. The broken circle represents the unit circle. (c) Cluster-size distributions at
τ = 100 resulting from the trimodal, and (d) tetramodal initial conditions described above,
respectively.

4. Similarity predictions

It is interesting to examine how the memory of initial conditions influences the scaling theory
presented earlier. For the scaling relationship proposed by VDE and Friedlander (see (2)),
the particle-size distributions are collapsed onto a single curve,ψ(η), by amplifying the
magnitude ofnj by s(t)2, and by attenuating the magnitude ofj by 1/s(t). Here,s(t) is a
measure of the average aggregate size and, as has already been mentioned, in the case of the
constant kernels(t) ∼ t . The net effect of this scaling transform on our solution for bimodal
initial conditions is illustrated in figure 6(a): the exponential regions of each particle-size
distribution all collapse onto the curveψ(η) = e−η (full curve), although oscillations at
small η are evident even after 100 coagulation timescales. For the choice of a constant
kernel, thej value corresponding to any fixed value ofη = j/s(t) increases linearly with
time. As a result, the oscillations at smallj are relegated to smaller and smallerη values
with increasing time. Indeed, Kreer and Penrose (1994) have shown for a constant kernel
and an initial cluster-size distribution that decays at least exponentially inj , that all traces
of the initial distribution are lost in the limit ast → ∞ and the VDE transform of the
particle-size distributions conforms exactly toψ(η) = e−η. In this case, however, the
remnants of the initial condition are only erased fromψ(η) when t →∞ and the value of
j corresponding to any fixedη is infinitely large.

What can be said about the scaling properties of the small end of the size spectrum?
We found that by altering the nature of the scaling transformation it is possible to develop a



Particle coagulation and the memory of initial conditions 9249

Figure 6. (a) Cluster-size distributions scaled according to the theory of Swift and Friedlander,
and van Dongen and Ernst. The cluster-size distributions were calculated forJ = 4 and
α = β = 0.5 at τ = 1, 10, 50, and 100. The full curve isψ(η) = e−η. (b) Cluster-size
distributions scaled according to (17a–c) so that the small end of the size spectrum collapses
onto the full curve given byξ(j).

different scaling relationship that focuses exclusively on the small end of the size spectrum.
For a fixedj and in the limit ast → ∞, the bimodal solution for the constant kernel
exhibits the following scaling behaviour at the small end of the size spectrum:

nj ∼ s(t)−2ξ(j) (17a)

where

s(t) = N̄1/N̄∞(τ ) ∼ t (17b)

and

ξ(j) = (α + βJ )2
j

J−1∑
l=0

(
j − l(J − 1)

l

)
αj−lJ βl. (17c)

In figure 6(b), we have re-plotted the same cluster distributions illustrated in figure 6(a)
according to the relation presented in (17a). As illustrated in this figure, the small end of the
size spectrum collapses to the curve predicted byξ(j) (full curve) within approximately 50
coagulation timescales. These results demonstrate that the memory of the initial condition
is permanently etched into the small end of the size spectrum. In contrast to the VDE
transformation whereψ(η) is a universal function in the limit ast →∞, our transformation
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yields a functionξ(j) that depends in detail on the nature of the initial conditions (i.e. the
values ofα, β andJ ). Consequently, the shape of the small end of the size spectrum, as
manifested byξ(j), is not universal.

As presented, the transformation given by (17a–c) is only applicable to the bimodal
solution presented in this paper. However, this transformation can be generalized to include
solutions of Smoluchowski’s coagulation equation with a constant kernel and arbitrary initial
conditions, as detailed next. Recall that the nonlinear differential equation for the generating
function,g(x, τ ) =∑∞j=0 n̄j (τ )x

j , derived in section 2 (see (7)) is solved by changing the
dependent variable tog(x, τ )−1. Let g(x, τ )−1 = m(x, τ) = ∑∞

j=0 ajx
j . The linearized

differential equation that results form(x, τ), ∂/∂τ [m(x, τ)] = −1, has the solution

m(x, τ) = −τ + 1/g(x, 0) (18)

where g(x, 0) is the generating function that describes the initial condition. Although
eachn̄j (τ ) evolves non-trivially with time (see (12)), the coefficients in the power series
expansion form(x, τ), aj , evolve in a trivial fashion:

a0(τ ) = −τ − 1 (19a)

aj (τ ) = aj (0) = −a0(0)
j−1∑
i=0

ai(0)n̄j−i (0) j > 1. (19b)

The coefficientsaj , are computed directly from the initial distribution of clusters,n̄j (0).
Furthermore, forj > 1, aj is a constant with respect to time, or a ‘conserved quantity’.
Now consider the asymptotic behaviour ofn̄j (τ ) as τ → ∞. It can be shown through
algebraic manipulations of (8) that

g(x, τ ) = 1

1+ τ

(
−1

1− 1
1+τ (1+ g(x, 0))/g(x, 0)

)
. (20)

Expanding the fraction contained within parentheses in (20) as a truncated power series, we
find

g(x, τ ) ∼ 1

1+ τ
(
−1− 1

1+ τ (1+m(x, 0))

)
(21)

wherem(x, 0) = 1/g(x, 0) =∑∞j=0 aj (0)x
j . Taking the limit ast →∞ of (21) gives us

g(x, t) ∼ − 1

(1+ t)2m(x, 0) (22)

from which we deduce the following asymptotic behaviour ofn̄j (t):

nj ∼ − 1

(1+ t)2aj . (23)

Equation (23) takes on the same form as (17a), when it is expressed in terms ofs(t):

nj ∼ s(t)−2(−N̄2
1aj ) (24)

and thusξ(j) = −N̄2
1aj . Because the conserved quantities,aj , can be specified for any

initial distribution of particles, the scaling relationship given by (17a, b) applies to solutions
of (1) for a constant kernel and any initial condition. The conserved quantities,aj , presented
here are closely related to theaj described by Leyvraz (1984), although the latter only apply
to kernels withλ > 0.

How might the results obtained in this study extrapolate to other frequently employed
coagulation kernels (see table 1)? In general, the small end of the size spectrum is more
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Table 1. Properties of common coagulation kernels. The kernels are presented assuming that the
cluster stickiness,αij , is unity. The homogeneity,λ, and the smalli/j limit, µ, were calculated
for each physical kernel by assuming that both the hydrodynamic radius and the collision cross
section radius scale with cluster size asri ∼ i1/D whereD is the fractal dimension of the cluster.
DLA and RLA are diffusion- and rate-limited aggregation, respectively.ε is the turbulent energy
dissipation rate,v is the kinematic viscosity of the fluid,T is the absolute temperature,kb is the
Boltzman constant,r1 is the radius of a monomer,µv is the dynamic viscosity of the fluid,ρf
is the density of the fluid in which coagulation takes place,K1,1 describes the coagulation rate
between two monomers, andω is an exponent characterizing the surface area of a cluster.

Description KernelKij λ µ

Physical kernels
Fluid shear
—rectilineara 1

3(ε/v)
0.5(ri + rj )3 3/D 0

—curvilinearb 1.3(ε/v)0.5(ri + rj )3E 3/D 0
where

E = 1− 1+5p+2.5p2

(1+p)5 and

p = ri/rj < 1
Differential settling
—rectilinearc π(ri + rj )2|wi − wj | 1+ 1/D 0
—curvilineard 0.5π(r2

i )|wi − wj | 1+ 1/D 2/D
Brownian diffusion (DLA) 2kbT /3µv(1/ri + 1/rj )(ri + rj ) 0 −1/D
RLA — 1 0

Mathematical kernels
Constant kernel K1,1 0 0
Product kernel K1,1(ij)

ω 2ω ω

Sum kernel K1,1(i + j)/2 1 1

a Saffman and Turner (1956).
b Landau and Lifshitz (1959).
c Friedlander (1977).
d Pruppacher and Klett (1978).

likely to retain a memory of the initial conditions when small clusters do not readily
coagulate with either themselves or with larger clusters. This implies that the behaviour
observed in this study for the small end of the size spectrum is most likely to occur when
the coagulation kernel is characterized byλ andµ values that are greater than, or equal to,
zero. This condition is not met in the case of DLA (i.e.µ < 0) which may explain why
Hidy (1965) found that a numerical solution of (1) with the DLA kernel and bimodal initial
conditions produced self-similar cluster-size distributions consistent with (2) forτ > 48.
Apart from DLA, all of the physical kernels listed in table 1 are characterized byµ and
λ > 0. For these kernels, the remnants of polydisperse initial conditions might very well
survive for long periods of time at the small end of the size spectrum. Further research is
needed to assess whether the results presented here are unique to the constant kernel, or
applicable to a broader class of problems.

5. Conclusion

We have derived a solution to the discrete von Smoluchowski’s coagulation equation with
a constant kernel and bimodal initial conditions by use of a generating function. The
resulting solution for the cluster-size distribution is described by a region of oscillation at
the small end of the size spectrum, and an exponentially decaying region at the large end
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of the size spectrum. We have illustrated the time evolution of the distribution and shown
how the parameters describing the initial condition, namely,α, β andJ , affect the cluster-
size distribution throughj -space. We have found that the similarity predictions made by
VDE are not accessible at finite times for the small end of the size spectrum, and that
fundamentally different scaling relationships describe the shapes of the small and large ends
of the cluster-size spectrum.
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Appendix

We being by expanding the expression for the generating function given in (11):

g(x, τ ) = −1+ αx + βxJ
1+ τ × 1

1− τ
1+τ (αx + βxJ )

. (A1)

Using the definition for a geometric series, and then the binomial theorem, (A1) can be
rewritten:

g(x, τ ) = −1+ αx + βxJ
1+ τ

∞∑
k=0

k∑
l=0

(
τ

1+ τ
)k (

k

l

)
αk−1βlxk+l(J−1) (A2)

where (
k

l

)
= k!

(k − l)!l! .

The indices of summation are changed such thatj = k + l(J − 1). This transformation
takes (A2) to

g(x, τ ) = −1+ αx + βxJ
1+ τ

∞∑
j=0

xj

j

J−1∑
l=0

(
τ

1+ τ
)j−l(J−1) (

j − l(J − 1)
l

)
αj−lJ βl. (A3)

We break (A3) into three sums:

g(x, τ ) = S1+ S2+ S3 (A.4a)

where

S1 = −1

1+ τ
∞∑
j=0

xj

j

J−1∑
l=0

(
τ

1+ τ
)j−l(J−1) (

j − l(J − 1)
l

)
αj−lJ βl (A.4b)

S2 = α

1+ τ
∞∑
j=0

xj+1

j

J−1∑
l=0

(
τ

1+ τ
)j−l(J−1) (

j − l(J − 1)
l

)
αj−lJ βl (A.4c)

and,

S3 = β

1+ τ
∞∑
j=0

xj+J
j

J−1∑
l=0

(
τ

1+ τ
)j−l(J−1) (

j − l(J − 1)
l

)
αj−lJ βl. (A.4d)
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These three sums are treated individually. InS1, we break off thej = 0 term:

S1 = −1

1+ τ −
1

1+ τ
∞∑
j=1

xj

j

J−1∑
l=0

(
τ

1+ τ
)j−l(J−1) (

j − l(J − 1)
l

)
αj−lJ βl. (A.5)

In S2, we change the index on the outer summation fromj to j − 1:

S2 = 1

1+ τ
∞∑
j=1

xj

j−1
J−1∑
l=0

(
τ

1+ τ
)j−1−l(J−1) (

j − 1− l(J − 1)
l

)
αj−lJ βl. (A.6)

In S3, we change the indices used in both summations first fromj to j − J and then from
l to l − 1:

S3 = 1

1+ τ
∞∑
j=J

xj

j−1
J−1∑
l=1

(
τ

1+ τ
)j−1−l(J−1) (

j − 1− l(J − 1)
l − 1

)
αj−lJ βl. (A.7)

We can start the outer summation inS3 from j = 1 because forj with 16 j < J , the upper
bound of the inner summation,(j − 1)/(J − 1), is less than 1 and so the inner summation

is empty. The inner summation can be started froml = 0 since

(
n

−1

)
= 0 by convention:

S3 = 1

1+ τ
∞∑
j=1

xj

j−1
J−1∑
l=0

(
τ

1+ τ
)j−1−l(J−1) (

j − 1− l(J − 1)
l − 1

)
αj−lJ βl. (A.8)

S2 andS3 can be added together using the relation

(
n

k − 1

)
+
(
n

k

)
=
(
n+ 1
k

)
:

S2+ S3 = 1

1+ τ
∞∑
j=1

xj

j−1
J−1∑
l=0

(
τ

1+ τ
)j−1−l(J−1) (

j − l(J − 1)
l

)
αj−lJ βl. (A.9)

We would like to add (A9) toS1, given in (A5), but the upper bound forl is (j−1)/(J −1)
in (A9) not j/(J − 1), as it is inS1. This can only make a difference when there is anL

such thatL = j/(J −1), j > 1 or j = L(J −1), L > 0 necessarily. However, in this case,
the term(

τ

1+ τ
)j−1−L(J−1) (

j − L(J − 1)
L

)
αj−LJβL =

(
τ

1+ τ
)−1(

0
L

)
α−LβL = 0.

So we may increase the upper bound toj/(J − 1) in (A9). Adding this toS1, we finally
obtain an expression for the generating function,g(x, τ ), in increasing powers ofx:

g(x, τ ) = − 1

1+ τ +
1

(1+ τ)2
∞∑
j=1

xj

j

J−1∑
l=0

(
τ

1+ τ
)j−1−l(J−1) (

j − l(J − 1)
l

)
αj−lJ βl.

(A.10)

Hence, by the definition of the generating function given in (6):

N̄∞(τ ) = 1

1+ τ (A.11)

and the expression for̄nj (τ ) presented in (12) is easily extracted.
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